Меню

Схема компенсация реактивной мощности в квартире

Схемы включения батарей конденсаторов для компенсации реактивной мощности

Комплектные конденсаторные установки состоят из стандартных заводских шкафов и могут быть нерегулируемыми и регулируемыми.

Регулирование может быть одно- или многоступенчатым. При одноступенчатом регулировании автоматически включается и отключается вся установка. При многоступенчатом регулировании автоматически переключаются отдельные секции батарей конденсаторов.
Автоматическое регулирование должно обеспечивать: в режиме максимума нагрузок энергосистемы — заданную степень компенсации реактивной нагрузки, в промежуточных и минимальных режимах нагрузок — нормальный режим работы сети (т. е. не допускать перекомпенсации и отклонений напряжения, более допустимых).

Первое требование наиболее просто выполняется, если в качестве параметра регулирования использовать реактивную мощность (реактивный ток). Регулирование по коэффициенту мощности cos φ не обеспечивает наиболее экономичного режима работы сетей и не рекомендуется.

Компенсация реактивной мощности с помощью конденсаторных батарей может быть индивидуальная, групповая и централизованная.

Индивидуальную компенсацию применяют чаще всего на напряжениях до 660 В. При этом конденсаторную батарею наглухо присоединяют к зажимам приемника. В этом случае от реактивной мощности разгружается вся сеть системы электроснабжения. Такой вид компенсации имеет существенный недостаток — плохое использование установленной мощности конденсаторной батареи, так как с отключением приемника отключается и компенсирующая установка.

При групповой компенсации конденсаторную батарею присоединяют к распределительным пунктам сети. При этом использование установленной мощности несколько увеличивается, но распределительная сеть от распределительного пункта до приемника остается нагруженной реактивной мощностью нагрузки.

При централизованной компенсации конденсаторную батарею присоединяют на шины 0,4 кВ цеховой подстанции или на шины 6 — 10 кВ главной понизительной подстанции. В этом случае от реактивной мощности разгружаются трансформаторы главной понизительной подстанции и питающая сеть. Использование установленной мощности конденсаторов при этом получается наиболее высоким.

Во избежание существенного возрастания затрат на отключающую, измерительную и другую аппаратуру не рекомендуется установка батарей конденсаторов 6 — 10 кВ мощностью менее 400 квар при присоединении конденсаторов с помощью отдельного выключателя (рис. 1, а) и менее 100 квар при присоединении конденсаторов через общий выключатель с силовым трансформатором, асинхронным двигателем и другими приемниками (рис. 1, б).

Рис. 1. Схема включения батарей конденсаторов: а — с отдельным выключателем, б — с выключателем нагрузки, ТН — трансформатор напряжения, используемый в качестве разрядного сопротивления для батареи конденсаторов, ЛИ — сигнальные индикаторные лампы

Конденсаторная установка должна иметь защиту от повышения напряжения, отключающую батарею при повышении действующего напряжения сверх допустимого. Отключать установку следует с выдержкой 3 — 5 мин. Повторное включение допускается после снижения напряжения в сети до номинального, но не ранее чем через 5 мин после ее отключения.

При отключении конденсаторов необходимо, чтобы запасенная в них энергия разряжалась автоматически на постоянно включенное активное сопротивление (например, трансформатор напряжения). Значение сопротивления должно быть таким, чтобы при отключении конденсаторов не возникло перенапряжение на их зажимах.

Емкости фаз конденсаторной установки должны контролироваться стационарными устройствами измерения тока в каждой фазе. Для установок мощностью до 400 квар допускается измерение тока только в одной фазе. Соединение конденсаторов между собой и подключение их к шинам должны выполняться гибкими перемычками.

Защита конденсаторных батарей напряжением выше 1000 В от коротких замыканий может выполняться предохранителем типа ПК или реле мгновенного действия. Защита от замыканий? на землю осуществляется токовым реле Т, действующим через промежуточное реле П на отключение.

Рис.2. Схема защиты высоковольтных конденсаторов

Защита конденсаторных батарей при однофазных замыканиях на землю устанавливается в следующих случаях: когда токи замыкания на землю составляют выше 20 А и когда защита от междуфазных замыканий не срабатывает.

Автоматическое регулирование мощности конденсаторных батарей

Мощность конденсаторной установки регулируют:

по напряжению в точке присоединения конденсаторов;

по току нагрузки объекта;

направлению реактивной мощности в линии, связывающей предприятие с внешней сетью;

Наиболее простым и приемлемым для промышленных предприятий является автоматическое регулирование по напряжению на шинах подстанции (рис. 3).

Рис. 3. Схема одноступенчатого автоматического регулирования мощности конденсаторных батарей по напряжению

В качестве пускового органа схемы используют реле минимального напряжения H1, имеющее один замыкающий и один размыкающий контакты. При понижении напряжения на подстанции ниже заданного предела реле H1 срабатывает и замыкает свой замыкающий контакт в цепи реле РВ1. Реле РВ1 с заданной выдержкой времени замыкает свой замыкающий контакт в цепи электромагнита ЭВ и включает выключатель.

При повышении напряжения на шинах подстанции выше предельного реле H1 возвращается в исходное положение, размыкает свой замыкающий контакт и замыкает свой размыкающий контакт в цепи реле РВ1. Реле РВ2 срабатывает и с заданной выдержкой времени отключает выключатель — батарея отключается. Реле времени служат для отстройки от кратковременных повышений и понижений напряжения.

Для отключения конденсаторной батареи от защиты предусмотрено промежуточное реле П (цепи защиты условно показаны одним замыкающим контактом Р3).

При действии защиты реле П срабатывает и в зависимости от положения выключателя отключает его, если он включен, или предотвращает включение на короткое замыкание размыканием размыкающего контакта реле П.

Для многоступенчатого автоматического регулирования по напряжению нескольких конденсаторных установок схема каждой из них аналогична, только напряжение срабатывания пускового реле выбирается в зависимости от заданного режима напряжения в сети.

Автоматическое регулирование мощности конденсаторных батарей по току нагрузки осуществляется примерно по аналогичной схеме, только в качестве пускового органа служат токовые реле, включенные в сеть со стороны питания (ввода).

Возможности компенсации реактивной энергии в быту с помощью Saving Box

Рекламные трюки продавцов бытовой техники для экономии электроэнергии

Навязчивая реклама в интернете и даже на государственных каналах телевидения через телемагазин настойчиво предлагает населению устройство для экономии электроэнергии в виде «новинок» электронной промышленности. Пенсионерам предоставляется скидка 50 % от общей стоимости.

«Saving Box» — так называется один из предлагаемых приборов. О них уже писалось в статье «Приборы для экономии электроэнергии: миф или реальность?». Пришла пора продолжить тему на примере конкретной модели, объяснив более подробно:

что такое реактивное сопротивление;

каким образом создается активная и реактивная мощность;

как осуществляется компенсация реактивной мощности;

на основе чего работают компенсаторы реактивной мощности и устройство для экономии электроэнергии.

Людям, купившим такое устройство, приходит по почте посылка с красивой коробочкой. Внутри расположен элегантный пластмассовый корпус с двумя светодиодами на лицевой стороне и вилкой для установки в розетку — с обратной.

Чудо-прибор для экономии электроэнергии (для увеличения нажмите на рисунок):

На приложенной фотографии показаны заявленные производителем характеристики: 15000 Вт при напряжении в сети от 90 до 250 В. Оценим их с точки зрения электрика-практика по приведенным под картинками формулам.

При наименьшем указанном напряжении такое устройство должно пропускать через себя ток 166,67 А, а при 250 В — 60 А. Сравним полученные расчеты с нагрузками сварочных аппаратов переменного напряжения.

Ток сварки для стальных электродов диаметром 5 мм составляет 150÷220 ампер, а для толщины 1,6 мм достаточно — 35÷60 А. Эти рекомендации есть в любом справочнике электросварщика.

Вспомните вес и габариты сварочного аппарата, который варит электродами 5 мм. Сравните их с пластмассовой коробочкой, величиной с зарядное устройство мобильного телефона. Подумайте, почему от тока 150 А плавятся стальные электроды 5 мм, а остаются целыми контакты вилки этого «прибора», да и вся проводка в квартире?

Читайте так же:  Цвет указан в заявление

Чтобы понять причину такого несоответствия, пришлось вскрыть корпус, показав «внутренности» электроники. Там кроме платы для подсветки светодиодов и предохранителя размещена еще одна пластиковая коробочка, для бутафории.

Внимание! В этой схеме отсутствует устройство для экономии электроэнергии или ее компенсации.

Неужели обман? Попробуем разобраться с помощью основ электротехники и действующих промышленных компенсаторов электроэнергии, работающих на предприятиях энергетики.

Принципы электроснабжения

Рассмотрим типовую схему подключения к генератору переменного напряжения потребителей электричества, как маленький аналог питающей электросети квартиры. Для наглядности его характеристик индуктивности, емкости и активной нагрузки показаны обмотка трансформатора, конденсатор и ТЭН. Будем считать, что они работают в установившемся режиме при прохождении по всему контуру тока одной величины I.

Электрическая схема (для увеличения нажмите на рисунок):

Здесь энергия генератора с напряжением U распределится составными частями на:

обмотку индуктивности UL;

обкладки конденсатора UC;

активное сопротивление ТЭН UR.

Если представить рассматриваемые величины векторной формой и выполнить их геометрическое сложение в полярной системе координат, то получится обыкновенный треугольник напряжений, в котором величина активной составляющей UR по направлению совпадает с вектором тока.

UХ образован сложением падений напряжений на обмотке индуктивности UL и обкладках конденсатора UС. Причем это действие учитывает их направление.

В итоге получилось, что вектор напряжения генератора U отклонен от направления тока I на угол φ.

Еще раз обратите внимание на то, что ток в цепи I не меняется, он одинаков на всех участках. Поэтому разделим составляющие треугольника напряжений на величину I. На основании закона Ома получим треугольник сопротивлений.

Общее сопротивление индуктивности XL и емкости ХС принято называть термином «реактивное сопротивление» Х. Приложенное к клеммам генератора полное сопротивление нашей цепи Z состоит из суммы активного сопротивления ТЭН R и реактивного значения Х.

Выполним другое действие — умножение векторов треугольника напряжений на I. В итоге преобразований формируется треугольник мощностей. Активная и реактивная мощность у него создают полную приложенную величину. Суммарная энергия, выдаваемая генератором S, расходуется на активную Р и реактивную Q составляющие.

Активная часть расходуется потребителями, а реактивная выделяется при магнитных и электрических преобразованиях. Емкостные и индуктивные мощности потребителями не используются, но нагружают токопроводы с генераторами.

Внимание! Во всех 3-х прямоугольных треугольниках сохраняются пропорции между сторонами, а угол φ не меняется.

Теперь будем разбираться, как проявляется реактивная энергия и почему счетчики бытовые ее не учитывали.

Что такое компенсация реактивной мощности в промышленности?

В энергетике страны, а более точно — государств целого континента, производством электричества занято огромнейшее число генераторов. Среди них встречаются как простые самодельные конструкции мастеров-энтузиастов, так и мощнейшие промышленные установки ГЭС и атомных станций.

Вся их энергия суммируется, трансформируется и распределяется конечному потребителю по сложнейшим технологиям и транспортным магистралям на огромные расстояния. При таком способе передачи электрический ток проходит через большое количество индуктивностей в виде обмоток трансформаторов/автотрансформаторов, реакторов, заградителей и других устройств, создающих индуктивную нагрузку.

Воздушные провода, а особенно кабели, создают в цепи емкостную составляющую. Ее величину добавляют различные конденсаторные установки. Металл проводов, по которым протекает ток, обладает активным сопротивлением.

Таким образом, сложнейшая энергетическая система может быть упрощена до рассмотренной нами схемы из генератора, индуктивности, активной нагрузки и емкости. Только ее необходимо еще объединить в три фазы.

Задача энергетики — дать потребителю качественное электричество. Применительно к конечному объекту это подразумевает подачу на вводной щиток электроэнергии напряжением 220/380 В, частотой 50 Гц с отсутствием помех и реактивных составляющих. Все отклонения этих величин ограничены требованиями ГОСТ.

При этом потребителя интересует не реактивная составляющая Q, создающая дополнительные потери, а получение активной мощности Р, которая совершает полезную работу. Для характеристики качества электричества пользуются безразмерным отношением Р к приложенной энергии S, для чего применяется косинус угла φ. Активную мощность Р учитывают все бытовые электрические счетчики.

Устройства компенсации электрической мощности приводят в норму электроэнергию для распределения между потребителями, уменьшают до нормы реактивные составляющие. При этом также осуществляется «выравнивание» синусоид фаз, в которых убираются частотные помехи, сглаживаются последствия переходных процессов при коммутациях схем, нормализуется частота.

Промышленные компенсаторы реактивной мощности устанавливаются после вводов трансформаторных подстанций перед распределительными устройствами: через них пропускается полная мощность электроустановки. Как пример, смотрите фрагмент однолинейной электросхемы подстанции в сети 10 кВ, где компенсатор принимает токи от АТ и только после его обработки электричество поступает дальше, а нагрузка на источники энергии и соединительные провода уменьшается.

Промышленные компенсаторы электроэнергии в сети 10 кВ:

Вернемся на мгновение к прибору «Saving Box» и зададим вопрос: как он может компенсировать мощности при расположении в конечной розетке, а не на вводе в квартиру перед счетчиком?

Смотрите на фото, как внушительно выглядят промышленные компенсаторы. Они могут создаваться и работать на разной элементной базе. Их функции:

плавное регулирование реактивной составляющей с быстродействующей разгрузкой оборудования от перетоков мощностей и снижения потерь энергии;

повышение динамической и статистической устойчивости схемы.

Выполнение этих задач обеспечивает надежность электроснабжения и уменьшение затрат на конструкцию тоководов нормализацией температурных режимов.

Что такое компенсация реактивной мощности в квартире?

Электроприборы домашней электрической сети также обладают индуктивным, емкостным и активным сопротивлением. Для них справедливы все соотношения рассмотренных выше треугольников, в которых присутствуют реактивные составляющие.

Только следует понимать, что они создаются при прохождении тока (учитываемого счетчиком, кстати) по уже подключенной в сеть нагрузке. Генерируемые индуктивные и емкостные напряжения создают соответствующие реактивные составляющие мощности в этой же квартире, дополнительно нагружают электропроводку.

Их величину никак не учитывает старый индукционный счетчик. А вот отдельные статические модели учета способны ее фиксировать. Это позволяет точнее анализировать ситуацию с токовыми нагрузками и термическим воздействием на изоляцию при работе большого количества электродвигателей. Емкостное напряжение, создаваемое бытовыми приборами, очень маленькое, как и ее реактивная энергия и счетчики ее часто не показывают.

Компенсация реактивной составляющей в таком случае заключается в подключении конденсаторных установок, «гасящих» индуктивную мощность. Они должны подключаться только в нужный момент на определенный промежуток времени и иметь свои коммутационные контакты.

Такие компенсаторы реактивной мощности имеют значительные габариты и подходят больше для производственных целей, часто работают с комплектом автоматики. Они никак не снижают потребление активной мощности, не могут сократить оплату электроэнергии.

Рекламируемый чудо-прибор «Saving Box» и другие аналогичные устройства не имеет ничего общего с подобными конструкциями. Как устройство для экономии электроэнергии он работать не может.

Заключение

Заявленные производителем возможности и технические характеристики «Saving Box» не соответствуют действительности, используются для рекламы, построенной на обмане.

Обществу защиты прав потребителей и правоохранительным органам давно пора принять меры к прекращению продаж в стране некачественной продукции хотя бы через государственные каналы информации.

Потребляемая активная и реактивная мощность в квартире может быть снижена при выполнении простых рекомендаций, изложенных в статье: «Как экономить электроэнергию в квартире и частном доме».

Действительно ли так полезен бытовой компенсатор реактивной мощности

Экономия энергоносителей – одна из главных задач современной цивилизации. Все больше статей появляется в интернете об экономии электроэнергии методом компенсации реактивной мощности. Действительно, для промышленных предприятий данный процесс актуален, так как экономит денежные средства. Довольно много людей начинает задумываться, если промышленные предприятия экономят на реактивной составляющей, возможна ли экономия на этом в быту, путем компенсации реактивной составляющей в мастерской, на даче или в квартире.

Я наверное вас разочарую – это невозможно сделать, по нескольким причинам:

  1. Однофазные счетчики, которые устанавливаются для частных потребителей, ведут учет только активной мощности;
  2. Учет за реактивной составляющей ведется только на больших промышленных предприятиях, для частных потребителей этот учет не ведется;
  3. Такая энергия не выполняет абсолютно никакой полезной работы, а только греет провода и другие устройства;
Читайте так же:  Пособие по бир ип

Да, в бытовых условиях возможна установка фильтров, это снизит суммарный ток в цепи, уменьшит падение напряжения. При пуске устройств большой мощности (пылесосы, холодильники) бытовые компенсаторы реактивной мощности снижают пусковой ток. Довольно просто собрать компенсатор реактивной мощности своими руками в домашних условиях. Для этого необходимо рассчитать реактивную мощность для однофазного устройства:

Для этого вам необходимо произвести замеры напряжения и тока цепи. Как найти cosφ? Очень просто:

Р – активная мощность устройства (указывается на самом устройстве)

Теперь нужно рассчитать емкость конденсатора:

Подбираем конденсаторы для бытового компенсатора реактивной мощности по емкости, напряжению, роду тока. Конденсаторы вешаются параллельно нагрузке.

Снижение суммарного тока снизит нагрев и позволит максимально использовать мощность цепи. Но, на промышленных предприятиях cosφ строго регламентирован, и контролируется в большинстве случаев автоматически, то есть при выводе какого-либо устройства с работы cosφ все равно поддерживается в заданном диапазоне. Представьте, что вы рассчитали реактивную мощность в вашей квартире, сделали компенсатор и подключили в цепь. Но через некоторое время отключился потребитель (например, холодильник) и баланс сети нарушился. Теперь вы не компенсируете, а генерируете реактивную энергию обратно в сеть, тем самым негативно влияя на работу других потребителей. Для того чтобы сохранять баланс необходимо постоянно следить за работой различных устройств. В быту автоматизировать данный процесс слишком дорого и лишено смысла, так как это не позволит вам вернуть деньги даже за компенсатор.

Можно сделать вывод что компенсация реактивной мощности в быту бессмысленна, так как не позволит сэкономить средства, а установка нерегулируемого компенсатора может привести к перекомпенсации и как следствие только ухудшить коэфициент мощности сети cosφ.

Если вы хотите экономить электроэнергию следует пользоваться старыми надежными способами:

  1. Покупать бытовую технику класса А или В;
  2. Выключать свет и бытовые приборы (исключение холодильник) когда уходите из дома;
  3. Заменить лампы накаливания на энергосберегающие. Они и служат дольше и потребляют меньше;
  4. Если пользуетесь электрочайником – кипятите столько воды, сколько требуется, это существенно снизит потребляемую им энергию;
  5. Чистить фильтр пылесоса для улучшения тяги и снижения энергопотребления;
  6. Утепляйте помещения для минимального использования электрических обогревателей.

На видео показан бытовой компенсатор реактивной мощности своими руками

На видео используется бытовой компенсатор в виде блока конденсаторных батарей

Бытовой компенсатор реактивной мощности своими руками

В современном глобальном мире экономия энергоресурсов выходит на первое место по своей актуальности. Экономия энергии, в некоторых странах, активно поддерживается государством не только для крупных потребителей, но и для обычных обывателей. Что в свою очередь делает компенсатор реактивной мощности актуальным для домашнего применения.

Компенсация реактивной мощности:

Многие потребители, прочитав в интернете о компенсации реактивной мощности крупными заводами и фабриками тоже задумываются о компенсации реактивной составляющей у себя дома. Тем более что сейчас существует большой выбор компенсирующих устройств, применять которые можно в обыкновенном быту. О том, действительно ли существует возможность, несколько сэкономить на этом у вас дома, вы можете прочитать в этой статье. А мы рассмотрим, возможность сделать такой компенсатор своими руками.

Отвечу сразу – да, возможно. Более того, это не только дешевое, но и довольно простое устройство, однако для понимания принципа его работы нужно знать, что такое реактивная мощность.

С курса школьной физики, и азов электротехники многим из вас уже известно общие сведенья о реактивной мощности, поэтому следует перейти сразу к практической части, однако невозможно этого сделать, миновав нелюбимую всеми математику.

Итак, для начала выбора элементов компенсатора необходимо рассчитать реактивную мощность нагрузки:

Поскольку такие составляющие как напряжение и ток мы можем померять, то фазовый сдвиг мы можем замерять только с помощью осциллографа, а он есть не у всех, так что придется идти другим путем:

Поскольку мы используем самое примитивное устройство из самих конденсаторов, нам необходимо рассчитать их емкость:

Где f – частота сети, а ХС – реактивное сопротивление конденсатора, оно равно:

Конденсаторы подбираются по току, напряжению, емкости, мощности соответственно, отталкиваясь от ваших потребностей. Желательно чтобы количество конденсаторов было больше единицы, чтобы возможно было экспериментально подобрать наиболее подходящую емкость для нужного потребителя.

В целях безопасности компенсирующее устройство должно подключатся через плавкий предохранитель или автомат (на случай слишком большого зарядного тока или КЗ).

Поэтому рассчитаем ток плавкого предохранителя (плавкой вставки):

Где ів – ток плавкой вставки (предохранителя), А; n – количество конденсаторов в устройстве, штук; Qk– номинальная мощность однофазного конденсатора, кВАр; Uл – линейное напряжение, кВ (в нашем случае фазное без).

Если используем автомат:

После отключения компенсатора от сети на его зажимах будет напряжение, поэтому для быстрого разряда конденсаторов можно использовать резистор (лучше всего лампочку накаливания или неонку), подключив его параллельно устройству. Блок-схема и принципиальная схемы приведены ниже:

Блок-схема включения компенсатора реактивной мощности Продемонстрирую более наглядно

В отверстие номер один подключается потребитель, а в отверстие номер два подключается компенсатор.

Принципиальная схема компенсатора реактивной мощности Включение через предохранитель-автомат

Включается компенсирующее устройство всегда параллельно нагрузке. Данная хитрость уменьшает результирующий ток цепи, что уменьшает нагрев кабеля, соответственно к одной розетке может быть подключено большое количество потребителей или увеличена их мощность.

  1. Регулятор мощности для паяльникаПожалуй, каждый радиолюбитель задумывался о простом регуляторе мощности для своего.
  2. Блок питания с гасящим конденсаторомВполне естественно, что, как перед начинающим, так и перед опытным.
  3. Начинающим радиолюбителям, основные величины радиоэлектроникиВ этой статье приведены основные термины, правильное восприятие которых является.
  4. Перевод емкости конденсаторовКаждый радиолюбитель должен хоть не много, но разбираться в маркировке.
  5. Лазер своими рукамиМечта о маленьком карманном лазере стала реальностью с появлением и.

Компенсатор реактивной мощности

Известно, что электрическая энергия состоит из двух частей: активной и реактивной. Первая преобразуется в различные виды полезной энергии (тепловую, механическую и пр.), вторая – создаёт электромагнитные поля в нагрузке (трансформаторы, электродвигатели, дроссели, индукционные печи, осветительные приборы). Несмотря на необходимость реактивной энергии для работы указанного оборудования, она дополнительно нагружает электросеть, увеличивая потери активной составляющей. Это приводит к тому, что промышленный потребитель принужден дважды платить за одну и ту же энергию. Сначала по счётчику реактивной энергии и ещё раз косвенно, как потери активной составляющей, фиксируемые прибором учёта активной энергии.

Для решения этой задачи (уменьшение реактивной части энергии) были разработаны и сегодня широко используются во всём мире установки компенсации реактивной мощности. Они снижают значения потребляемой мощности за счёт выработки реактивной составляющей непосредственно у потребителя и бывают двух видов: индуктивными и емкостные. Индуктивные реакторы, обычно, применяют для компенсации наведённой емкостной составляющей (например, большая протяженность воздушных линий электропередачи и т.п.). Конденсаторные батареи применяются для нейтрализации индуктивной составляющей реактивной мощности (индуктивные печи, асинхронные двигатели и др.).

Компенсатор реактивной энергии позволяет:
— уменьшить потери мощности и снижение напряжения в различных участках электросети;
— сократить количество реактивной энергии в распределительной сети (воздушные и кабельные линии), трансформаторах и генераторах;
— снизить затраты на оплату потреблённой электрической энергии;
— сократить влияние сетевых помех на работу оборудования;
— снизить асимметрию фаз.

Учитывая, что характер нагрузки в бытовых и промышленных сетях имеет преимущественно активно-индуктивный тип, наиболее широко распростанены как средство компенсации статические конденсаторы. Их основными достоинствами являются:
— малые потери активной энергии (в рамках 0,3-0,45 кВт/100квар);
— незначительная масса конденсаторной установки не требует фундамента;
— несложная и недорогая эксплуатация;
— увеличение или уменьшение количества конденсаторов в зависимости от ситуации;
— компактность, дающая возможность монтажа установки в любом месте (у электроустановок, группой в цеху или крупной батареей). При этом наилучший эффект получается при размещении установки непосредственно в трансформаторной подстанции и подключении к шинам низкой стороны (0,4 кВ). В этом случае компенсируются сразу все индуктивные нагрузки, запитанные от данной ТП;
— независимость работоспособности установки от поломки отдельного конденсатора.
Конденсаторные установки с фиксированным значением мощности применяют в трёхфазных сетях переменного тока. В зависимости от типа нерегулируемые установки имеют мощность 2,5 – 100 кВАр на низком напряжении.

Читайте так же:  Оформление осаго требования

Ручная регулировка количества конденсаторов не всегда удобна и не успевает за изменением ситуации на производстве, поэтому всё чаще новые производства приобретают для компенсации реактивной энергии автоматические установки. Регулируемые компенсаторы повышают и автоматически корректируют cos φ на низком напряжении (0,4 кВ). Кроме поддержания установленного коэффициента мощности в часы минимальных и максимальных нагрузок, установки устраняют режим генерации реактивной энергии, а также:
— постоянно отслеживают изменение количества реактивной мощности в компенсируемой цепи;
— исключают перекомпенсацию и её следствие – перенапряжение в сети;
— проводят мониторинг главных показателей компенсируемой сети;
— проверяют работу всех составляющих компенсаторной установки и режим её работы. При этом оптимизируется распределение нагрузки в сети, что снижает износ контакторов.
В регулируемых компенсаторных установках предусматривается система отключения при возникновении аварийной ситуации с одновременным оповещением обслуживающих специалистов. В некоторых моделях также предусматривается система поддержания нормальной температуры, включающая автоматический обогрев или вентиляцию установки.

Стоит ли делать или покупать приборы экономии электроэнергии

В последнее время Я часто стал встречать рекламу в интернете чудо прибора, который достаточно просто включить в розетку и он обеспечит 30-40 процентов экономии электроэнергии. И вот такой купил мой друг на рынке за 35$, но к своему удивлению он не смог заметить за несколько месяцев даже намека на экономию. Я его уговорил разобрать и посмотреть, что внутри. А там только схема питания для светодиодов, установленных в корпусе- в общем полный развод.

Долго пришлось ему рассказывать основы электротехники и про то, какие схемы действительно позволяют достичь экономии. Я даже поделился своим опытом самостоятельного изготовления схем для бытовых нужд для своего дома. Более подробно про чудо приборы заводского изготовления читайте в конце статьи, а сейчас Я расскажу про основополагающие принципы и свой самостоятельный опыт изготовления устройств для экономии электроэнергии в своей квартире.

Как можно сэкономить электроэнергию.

Любая полная мощность состоит из полезной активной, которая производит работу и реактивной, от которой пользы нет. Она снижает эффективность всей энергосистемы.

Мы с вами по нашим электрическим счетчикам в домах, квартирах, гаражах и т. п. платим только за потребление активной энергии. А заводы и фабрики платят и за реактивную энергию, учет которой ведут специальные счетчики. Именно они ее кстати и производят при помощи оборудования с большой индуктивной составляющей.

Реактивная энергия берется из электросети для создания магнитного поля (в катушке, обмотках электродвигателя и т. п.) или электрического (в конденсаторе).

Говоря простыми словами — это электрическая энергия в электросети, которая у потребителей не используется, поэтому и Мы с вами за неё не платим. Реактивную составляющую электроснабжающие организации стараются максимально снизить с помощью конденсаторных установок так, как она снижает эффективность передачи электроэнергии.

Поэтому понятно возникновение идеи преобразования в домашних условиях реактивной энергии в полезную активную. Это можно сделать с помощью разных схем с использованием конденсаторов, которых на просторах инернета можно найти очень много. Поиском и реализацией этих схем занимался Я и мои коллеги электрики, поэтому хочу поделится своим опытом.

Опыт использования различных схем устройств экономии электроэнергии.

Сразу хочу огорчить, что сэкономить не получилось, но за то вышло хорошее устройство для подавления помех в домашней электропроводке и эффективная грозозащита. Если не верите проверьте на своем опыте.

Все подобные приборы используют в своей схеме накопители энергии или конденсаторы. Только предупреждаю , что в интернете есть ошибочные схемы при реализации, которых возможно возникновение короткого замыкания, вследствие чего может возникнуть возгорание вашего творения. Причем авторы статей утверждают, что им удалось добиться экономии до 50 процентов, всем кто хорошо знает электротехнику просто становится смешно от такого бреда.

Новые электронные счетчики считают принципиально по-другому, поэтому самодельные схемы Вам не помогут, и даже могут повредить электронику устройства. Не так давно мой друг решил сделать своими руками и опробовать штуковину для экономии, которая проработала несколько минут пока не сгорела микросхема внутри счетчика.
Остановимся теперь на заводских приборах.

Приборы для экономии электроэнергии заводского изготовления.

Сейчас в средствах массовой информации и в интернете активно рекламируется чудо-прибор, который позволяет экономить до 30% электроэнергии в домашних условиях. У него много разных названий SmartBox, Energy Saver, Экономыч и др. Но суть у них всех одна втыкаешь просто в розетку и значительно меньше платишь по счетам.

С более подробной информацией вы можете ознакомиться на официальном сайте-производителя.

По словам производителя они обладают функциями по фильтрации помех, защиты от ударов молнии, перекоса фаз и да же преобразуют реактивную электрическую энергию в активную. Но к сожалению реализовать это все в одном не большом приборе на современном этапе развития технологий не возможно. Да в промышленных масштабах возможно добиться экономии максимум 10-15 процентов с использованием дорогих и объемных устройств.

Все производители аппаратов для экономии электроэнергии в домашних условиях на самом деле жульничают и продают бесполезное барахло.

Использовать устройства для экономии электричества в домашних условиях лишено всякого смысла. Но есть другие эффективные методы, позволяющие сэкономить при чем значительно. Читайте о них в следующей нашей статье.

Читайте так же:

  • Пособие по плаванию для детей Учебно-методическое пособие: Перспективное планирование по подготовке детей к плаванию Главной целью занятий по плаванию в детском саду является не только привыкание к воде и закаливание, укрепление детского организма, но и обучение плаванию различными способами. Для того, чтобы ускорить […]
  • Как оплатить налог в фнс Уплата земельного налога Вне зависимости от размера и стоимости земельного участка за него должна происходить ежегодная уплата земельного налога. Те, кто давно владеет угодьями, знают, где и как уплачивают земельный налог, куда и когда нужно идти. Но за этим землевладельцы по привычке […]
  • Материнский капитал закон об использовании до трех лет ЧТО НУЖНО ЗНАТЬ ОБ ИЗМЕНЕНИЯХ В ПЕНСИОННОЙ СИСТЕМЕ ознакомиться с инфографикой ознакомитьсяс инфографикойскачать брошюру (297 Кб) Материнский (семейный) капитал – это мера государственной поддержки российских семей, в которых с 2007 по 2021 год включительно родился (был усыновлен) […]
  • Сгб банк лицензия отозвана СКБ банк лицензия отозвана, правда или происки конкурентов? В сентябре месяце 2014 года по городам России поползли тревожные слухи о том, что ЦБ один за другим лишает крупные банки лицензий. Каждый банк, получая право вести банковское дело, обязательно попадает по юрисдикцию ЦБ и обязан […]
  • Страховка по родам в чехии Медицинские страховки в Чехии и в Праге VÁCLAVSKÉ NÁM. 66 Главная → Новости → Как рожать ребенка в Чехии – личный опыт Как рожать ребенка в Чехии – личный опыт Отзыв одной из наших клиенток, которая написала по нашей просьбе эту небольшую статью. Несколько лет назад тогдашний […]